In my introductory blog I mentioned how SLR was affecting the damage caused by major hurricanes including Sandy (2012) and Matthew (2016). Now as a Christmas present to my dear readers I will (finally!) address this and show how the small incremental change of SLR is having a large effect on the damage that these hurricanes are causing.
Along with the projected increase in cases of extreme (category 4 & 5) hurricanes in the future as a result of climate change (Goldenberg et al., 2001), SLR is projected to increase which means that storm surges associated with hurricanes will inundate further affecting more and more infrastructure and homes. A significant amount of the damage caused by Hurricane Matthew has been attributed to storm surging, while Hurricane Sandy saw large parts of New York under water.
There is an element of luck to how bad a storm surge will be, if the peak surge coincides with high tide then that can raise the height of the surge by many metres. This occurred during Hurricane Sandy in New York, causing significantly more damage than had it been at low tide. The acceleration in SLR (see below) is being particularly affected by thermal expansion with a further acceleration being reported in the last decade (see below), disproportionately so on the Atlantic Coast of North America (Rietbroek et al., 2016). This is thought to be due to a combination of meltwater fingerprinting and changing ocean cycles as I have indicated in earlier posts, the regional signal of SLC is critical in some areas.
Flooded taxis in New York following Hurricane Sandy. Source |
Source |
It is clear that hurricanes can cause significant coastal flooding which can be exacerbated by SLR. A paper by Woodruff et al., (2013) compared present day situations to early Holocene records where rapid SLR was experienced. Using past conditions can act as an analogue for the present and the future so to look at periods where similar conditions were experienced has certainly informed on the potential future tendencies They found that during the early Holocene SLR meant low-lying coastlines had low resilience to storm impacts. In addition they found that the worst storm surges are caused when winds are highest, considering storm activity is projected to increase with the strongest storms having the greatest effect (Zhang et al., 2001), it is likely that with SLR and increased activity coastal flooding could worsen. This is particularly likely in low-lying areas such as Bangladesh, where inundation of significant land area has been modelled to be very likely by 2050 (Lin et al., 2012). The suggestions of Woodruff et al., 2013 appears valid as it is very likely in the future a combination of SLR and increased storm activity could significantly affect coastal areas. This is supported by Mousavi et al., (2011) who modelled that even by 2030 as a result of SLR, surges could be up to 0.3 m higher in the USA, and by 2080 0.8 m higher. Considering they found this to likely be on the lower end of estimates due to unmodelled uncertainties, the effects of storm surging and the economic and human damage that it can bring will be significant.
Source |
It is apparent that SLR is having a significant effect on the destructiveness of storms. Raising the base sea level means storms like Sandy and Matthew cause far more damage than they would have 100 years ago and with projected increased storminess, governments need to get a handle on the potentially catastrophic effects. So Florida, get your act together!
No comments:
Post a Comment